Mechanisms of early pulmonary neutrophil sequestration in ventilator-induced lung injury in mice.

نویسندگان

  • Sharmila Choudhury
  • Michael R Wilson
  • Michael E Goddard
  • Kieran P O'Dea
  • Masao Takata
چکیده

Polymorphonuclear leukocytes (PMN) play an important role in ventilator-induced lung injury (VILI), but the mechanisms of pulmonary PMN recruitment, particularly early intravascular PMN sequestration during VILI, have not been elucidated. We investigated the physiological and molecular mechanisms of pulmonary PMN sequestration in an in vivo mouse model of VILI. Anesthetized C57/BL6 mice were ventilated for 1 h with high tidal volume (injurious ventilation), low tidal volume and high positive end-expiratory pressure (protective ventilation), or normal tidal volume (control ventilation). Pulmonary PMN sequestration analyzed by flow cytometry of lung cell suspensions was substantially enhanced in injurious ventilation compared with protective and control ventilation, preceding development of physiological signs of lung injury. Anesthetized, spontaneously breathing mice with continuous positive airway pressure demonstrated that raised alveolar pressure alone does not induce PMN entrapment. In vitro leukocyte deformability assay indicated stiffening of circulating leukocytes in injurious ventilation compared with control ventilation. PMN sequestration in injurious ventilation was markedly inhibited by administration of anti-L-selectin antibody, but not by anti-CD18 antibody. These results suggest that mechanical ventilatory stress initiates pulmonary PMN sequestration early in the course of VILI, and this phenomenon is associated with stretch-induced inflammatory events leading to PMN stiffening and mediated by L-selectin-dependent but CD18-independent mechanisms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NF-κB activation in myeloid cells mediates ventilator-induced lung injury

BACKGROUND Although use of the mechanical ventilator is a life-saving intervention, excessive tidal volumes will activate NF-κB in the lung with subsequent induction of lung edema formation, neutrophil infiltration and proinflammatory cytokine/chemokine release. The roles of NF-κB and IL-6 in ventilator-induced lung injury (VILI) remain widely debated. METHODS To study the molecular mechanism...

متن کامل

Mesenchymal Stem Cell Attenuates Neutrophil-predominant Inflammation and Acute Lung Injury in an In Vivo Rat Model of Ventilator-induced Lung Injury

BACKGROUND Subsequent neutrophil (polymorphonuclear neutrophil [PMN])-predominant inflammatory response is a predominant feature of ventilator-induced lung injury (VILI), and mesenchymal stem cell (MSC) can improve mice survival model of endotoxin-induced acute lung injury, reduce lung impairs, and enhance the repair of VILI. However, whether MSC could attenuate PMN-predominant inflammatory in ...

متن کامل

Critical role for CXCR2 and CXCR2 ligands during the pathogenesis of ventilator-induced lung injury.

Mortality related to adult respiratory distress syndrome (ARDS) ranges from 35% to 65%. Lung-protective ventilator strategies can reduce mortality during ARDS. The protective strategies limit tidal volumes and peak pressures while maximizing positive end-expiratory pressure. The efficacy of this approach is due to a reduction of shear-stress of the lung and release of inflammatory mediators. Ve...

متن کامل

Nicotinamide Exacerbates Hypoxemia in Ventilator-Induced Lung Injury Independent of Neutrophil Infiltration

BACKGROUND Ventilator-induced lung injury is a form of acute lung injury that develops in critically ill patients on mechanical ventilation and has a high degree of mortality. Nicotinamide phosphoribosyltransferase is an enzyme that is highly upregulated in ventilator-induced lung injury and exacerbates the injury when given exogenously. Nicotinamide (vitamin B3) directly inhibits downstream pa...

متن کامل

TRANSLATIONAL PHYSIOLOGY Differential roles of p55 and p75 tumor necrosis factor receptors on stretch-induced pulmonary edema in mice

Wilson MR, Goddard ME, O’Dea KP, Choudhury S, Takata M. Differential roles of p55 and p75 tumor necrosis factor receptors on stretch-induced pulmonary edema in mice. Am J Physiol Lung Cell Mol Physiol 293: L60–L68, 2007. First published April 13, 2007; doi:10.1152/ajplung.00284.2006.—Ventilator-induced lung injury plays a crucial role in the outcome of patients with acute lung injury. Previous ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Lung cellular and molecular physiology

دوره 287 5  شماره 

صفحات  -

تاریخ انتشار 2004